23.05.2022

Поколения процессоров AMD. История процессоров Первый процессор амд


Процессоры серии Am29000 (Am29K)

Процессоры серии Am29000
Процессор Особенности
32-разрядный процессор с RISC -архитектурой
Am29005 Упрощённая версия процессора Am29000
Модернизированный Am29000 с интегрированным 2-канальным ассоциативным кэшем объёмом 8 КБ
Упрощённая версия процессора Am29030 (4 КБ кэша прямого отображения)
Модернизированный Am29030 с интегрированным математическим сопроцессором и увеличенным кэшем
Am29050 Модернизированный Am29040 (суперскалярный с внеочередным исполнением)
Am291хх Семейство микроконтроллеров
Am292хх Семейство встраиваемых процессоров

Процессоры архитектуры x86

Процессоры, выпущенные по лицензии компании Intel

Процессоры , , ,
Процессор Особенности
Аналог процессора Intel 8088 .
Am80C88 Аналог процессора Intel 80C88 (выпускался по технологии CMOS).
Am8086 Аналог процессора Intel 8086 .
Am80C86 Аналог процессора Intel 80C86 (выпускался по технологии CMOS).
Am80188 Аналог процессора Intel 80188 .
Am80L188 Am80188 для встраиваемых систем.
Аналог процессора Intel 80186 .
Am80L186 Am80186 для встраиваемых систем.
Am186EM Модернизированный Am80186 для встраиваемых систем.
Аналог процессора Intel 80286 .
Am80C286 Аналог процессора Intel 80C286 (выпускался по технологии CMOS).
Am80EC286 Am80C286 с пониженным энергопотреблением.
Am80L286 Am80286 для встраиваемых систем.
тактовой частотой 10МГц) тактовой частотой 12МГц)

Процессоры серии Am386

Процессоры серии Am386
Процессор Особенности
Базовый процессор семейства. Функциональный аналог процессора Intel 80386DX .
Am386DX с пониженным тепловыделением.
Am386DX с пониженным напряжением питания.
Am386SX Am386 с 16-разрядной внешней шиной данных .
Am386SXL Am386SX с пониженным тепловыделением.
Am386SXLV Am386SX с пониженным напряжением питания.
Am386DE Am386DX для встраиваемых систем.
Am386SE Am386SX для встраиваемых систем.
Am386EM Модернизированный для встраиваемых систем с интегрированным контроллером памяти.

Процессоры серии Am486

Процессоры серии К5
Процессор Ядро Особенности
5k86 SSA/5 Первый процессор серии К5. Первый процессор x86 компании AMD, имеющий внутреннюю архитектуру CISC -to-RISC .
Godot Модернизированный 5k86.
5k86 (SSA/5) K5

Процессоры серии

Представлены в 1997 году. Выпускались до 2001 года .

Процессоры серии К6
Процессор Ядро Особенности
K6 Первый процессор серии К6. До приобретения AMD компании NexGen разрабатывался как NexGen Nx686 .
Little Foot K6, произведённый по обновлённому техпроцессу.
K6-2 Chomper Модернизированное ядро Little Foot с блоком 3DNow!
CXT Chomper Extended - ядро Chomper с более высокой тактовой частотой.
K6-III Sharptooth Модернизированное ядро Little Foot с интегрированным кэшем второго уровня (256 КБ).
K6-III+ Мобильный вариант, произведённый по обновлённому техпроцессу, поддерживающий технологию PowerNow! и имеющий расширенный набор инструкций 3DNow!
K6-2+ K6-III+ с уменьшенным кэшем второго уровня (128КБ).
K6 K6-2

Процессоры серии

Представлены в 1999 году. Выпускались до 2005 года.

Процессоры серии К7
Процессор Ядро Особенности
Athlon Argon (К7) Первое ядро, использованное в процессорах Athlon. Имеет внешний инклюзивный кэш второго уровня (512 КБ).
Orion/Pluto (К75) Ядро Argon, выполненное по обновлённому техпроцессу.
Thunderbird Ядро К75 с интегрированным эксклюзивным кэшем второго уровня (256 КБ).
Athlon XP Palomino Модернизированное ядро Thunderbird с аппаратной предвыборкой данных и блоком SSE .
Thoroughbred Ядро Palomino, выполненное по обновлённому техпроцессу.
Barton Модернизированное ядро Thoroughbred с увеличенным до 512 КБ кэшем второго уровня.
Thorton Ядро Barton с частично отключённым кэшем второго уровня (256 КБ).
Athlon MP Palomino Процессор Athlon XP с возможностью работы в многопроцессорной конфигурации.
Thoroughbred
Thorton
Athlon 4 Corvette Мобильный вариант ядра Palomino с поддержкой энергосберегающей технологии PowerNow!
Mobile Athlon XP Thoroughbred Мобильный вариант ядра Thoroughbred с поддержкой энергосберегающей технологии PowerNow!
Duron Spitfire Ядро Thunderbird с меньшим кэшем второго уровня (64 КБ).
Morgan Ядро Palomino с меньшим кэшем второго уровня (64 КБ).
Applebred Ядро Thoroughbred с частично отключённым кэшем второго уровня (64 КБ).
Mobile Duron Camaro Мобильный вариант ядра Spitfire с поддержкой энергосберегающей технологии PowerNow!
Morgan Мобильный вариант ядра Morgan с поддержкой энергосберегающей технологии PowerNow!
Sempron Thoroughbred Переименованный Athlon XP, предназначенный для рынка недорогих компьютеров.
Thorton
Barton
Geode NX Thoroughbred Процессор для встраиваемых систем.
Athlon XP

Процессоры Geode

Процессоры серии

Представлены в 2003 году . Все процессоры серии К8 имеют интегрированный контроллер памяти (одноканальный DDR - Socket 754 , двухканальный DDR - Socket 939 / Socket 940 или двухканальный DDR2 - Socket AM2 / Socket F) и поддерживают набор инструкций AMD64 (если не указано обратное).

Процессоры серии К8
Процессор Ядро Особенности
Opteron Sledgehammer Первая модель процессоров Opteron (130 нм).
Venus Одноядерные процессоры Opteron 1хх (90 нм).
Troy Одноядерные процессоры Opteron 2хх (90 нм).
Athens Одноядерные процессоры Opteron 8хх (90 нм).
Denmark Двухъядерные процессоры Opteron 1хх (90 нм).
Italy Двухъядерные процессоры Opteron 2хх (90 нм).
Egypt Двухъядерные процессоры Opteron 8хх (90 нм).
Santa Ana Socket AM2).
Santa Rosa Двухъядерные процессоры Opteron (90 нм, Socket F).
Clawhammer Первая модель процессоров Athlon 64 (130 нм, 1 МБ кэша второго уровня).
Newcastle Ядро Clawhammer с частично отключённым кэшем второго уровня (512 КБ).
Winchester Процессоры Athlon 64, произведённые по обновлённому (90 нм) техпроцессу.
Venice Ревизия ядра Winchester
San Diego Ревизия ядра Venice
Orleans Процессоры Athlon 64 для Socket AM2
Lima Одноядерные процессоры на базе ядра Brisbane
Sledgehammer Первая модель процессоров Athlon 64 FX (130 нм)
San Diego Процессоры Athlon 64 FX, произведённые по обновлённому техпроцессу (90 нм)
Toledo Двухъядерные процессоры Athlon FX (90 нм)
Manchester Двухъядерные процессоры на базе ядра Venice (512 КБ кэша второго уровня, Socket 939)
Toledo Двухъядерные процессоры на базе ядра Venice (1 МБ кэша второго уровня, Socket 939)
Windsor Двухъядерные процессоры на базе ядра Orleans (1 МБ кэша второго уровня, Socket AM2)
Brisbane Двухъядерные процессоры, произведённые по обновлённому (65 нм) техпроцессу
Athlon X2 Переименованные процессоры Athlon 64 X2 с новой системой обозначения моделей.
Sempron Paris Первая модель процессоров Sempron K8. Ядро Newcastle с частично отключённым кэшем второго уровня (256 КБ). Инструкции AMD64 заблокированы.
Palermo Ядро Winchester с частично отключённым кэшем второго уровня (128 или 256 КБ).
Manila Ядро Orleans с частично отключённым кэшем второго уровня (256 КБ).
Sparta Ядро Lima с частично отключённым кэшем второго уровня (512 КБ).
Athlon XP-M Dublin Мобильные процессоры. Инструкции AMD64 заблокированы.
Mobile Athlon 64 Newcastle Мобильный вариант ядра Newcastle.
Odessa Процессоры Mobile Athlon 64, произведённые по обновлённому техпроцессу (90 нм).
Oakville Процессоры Mobile Athlon 64 LV (их наследнимками стали Turion 64), произведённые по обновлённому техпроцессу (90 нм) с пониженным энергопотреблением.
Newark Процессоры Mobile Athlon 64, пришли на смену Odessa с Socket 754 и поддержкой SSE3.
Trinidad Двухъядерные процессоры Mobile Athlon 64 X2 (90 нм техпроцесс, арх. K8 rev.F, 512 КБ кэша второго уровня).
Turion 64 Lancaster Первая модель процессоров Turion 64 (90 нм).
Sherman Процессоры Turion 64, произведённые по обновлённому техпроцессу (65 нм).
Turion 64 X2 Taylor Двухъядерные процессоры Turion 64 X2 (90 нм техпроцесс, 256 КБ кэша второго уровня). Socket S1.
Tyler Процессоры Turion 64 X2, произведённые по обновлённому техпроцессу (65 нм). Socket S1.
Mobile Sempron Georgetown Первая модель процессоров Mobile Sempron (90 нм техпроцесс, Socket 754).
Albany Пришел на смену Georgetown, отличается поддержкой SSE3
Richmond Пришел на смену Albany, отличается двухканальным контроллером памяти DDR2 и разъемом Socket AM2 (арх. K8 rev.F)
Opteron Turion

Продолжая тему первой статьи - история эволюции процессоров с конца XX века по начала XXI века.

Во многих процессорах 80-х годов использовалась архитектура CISC (Complex instruction set computing). Чипы были довольно сложными и дорогими, а также не достаточно производительными. Возникла необходимость в модернизации производства и увеличения количества транзисторов.

Архитектура RISC

В 1980 году стартовал проект Berkeley RISC, которым руководили американские инженеры Дэвид Паттерсон и Карло Секвин. RISC (restricted instruction set computer) - архитектура процессора с увеличенным быстродействием благодаря упрощенным инструкциям.

Руководители проекта Berkeley RISC - Дэвид Паттерсон и Карло Секвин

После нескольких лет плодотворной работы, на рынке появилось несколько образцов процессоров с сокращенным набором команд. Каждая инструкция платформы RISC была простой и выполнялась за один такт. Также присутствовало намного больше регистров общего назначения. Кроме того использовалась конвейеризация с упрощенными командами, что позволяло эффективно наращивать тактовую частоту.

RISC I вышел в 1982 году и содержал более чем 44 420 транзисторов. Он имел всего 32 инструкции и работал на частоте 4 МГц. Следующий за ним RISC II насчитывал 40 760 транзисторов, использовал 39 инструкций и был более быстрым.

Процессор RISC II

Процессоры MIPS: R2000, R3000, R4000 и R4400

Архитектура процессоров MIPS (Microprocessor without Interlocked Pipeline Stages) предусматривала наличие вспомогательных блоков в составе кристалла. В MIPS использовался удлиненный конвейер.

В 1984 году группа исследователей во главе с американским ученым Джоном Хеннесси основала компанию, проектирующую микроэлектронные устройства. MIPS лицензировала микропроцессорную архитектуру и IP-ядра для устройств умного дома, сетевых и мобильных применений. В 1985 году вышел первый продукт компании - 32-битный R2000, который в 1988 году был доработан в R3000. У обновленной модели имелась поддержка многопроцессорности, кэш-памяти инструкций и данных. Процессор нашел применение в SG-сериях рабочих станций разных компаний. Также R3000 стал основой игровой консоли Sony PlayStation.

Процессор R3000

В 1991 году вышла линейка нового поколения R4000. Данный процессор обладал 64-битной архитектурой, встроенным сопроцессором и работал на тактовой частоте 100 МГц. Внутренняя кэш-память составляла 16 Кб (8 Кб кэш-команд и 8 Кб кэш-данных).

Через год вышла доработанная версия процессора - R4400. В этой модели увеличился кэш до 32 Кб (16 Кб кэш-команд и 16 Кб кэш-данных). Процессор мог работать на частоте 100 МГц - 250 МГц.

Процессоры MIPS: R8000 и R10000

В 1994 году появился первый процессор с суперскалярной реализацией архитектуры MIPS - R8000. Емкость кэш-памяти данных составляла 16 Кб. У этого CPU была высокая пропускная способность доступа к данным (до 1.2 Гб/с) в сочетании с высокой скоростью выполнения операций. Частота достигала 75 МГц - 90 МГц. Использовалось 6 схем: устройство для целочисленных команд, для команд с плавающей запятой, три вторичных дескриптора кэш-памяти ОЗУ и кэш-контроллер ASIC.

Процессор R8000

В 1996 году вышла доработанная версия - R10000. Процессор включал в себя 32 Кб первичной кэш-памяти данных и команд. Работал CPU на частоте 150 МГц - 250 МГц.

В конце 90-х компания MIPS занялась продажей лицензий на 32-битную и 64-битную архитектуры MIPS32 и MIPS64.

Процессоры SPARC

Ряды процессоров пополнили продукты компании Sun Microsystems, которая разработала масштабируемую архитектуру SPARC (Scalable Processor ARChitecture). Первый одноименный процессор вышел в конце 80-х и получил название SPARC V7. Его частота достигала 14.28 МГц - 40 МГц.

В 1992 году появилась следующая 32-битная версия под названием SPARC V8, на базе которой был создан процессор microSPARC. Тактовая частота составляла 40 МГц - 50 МГц.

Над созданием следующего поколения архитектуры SPARC V9 с компанией Sun Microsystems совместно работали Texas Instruments, Fujitsu, Philips и другие. Платформа расширилась до 64 бит и являлась суперскалярной с 9-стадийным конвейером. SPARC V9 предусматривала использование кэш-памяти первого уровня, разделенного на инструкции и данные (каждая объемом по 16 Кб), а также второго уровня емкостью 512 Кб - 1024 Кб.

Процессор UltraSPARC III

Процессоры StrongARM

В 1995 году стартовал проект по разработке семейства микропроцессоров StrongARM, реализовавших набор инструкций ARM V4. Эти CPU представляли собой классическую скалярную архитектуру с 5-стадийным конвейером, включая блоки управления памятью и поддерживая кэш-память инструкций и данных объемом по 16 Кб каждая.

StrongARM SA-110

И уже в 1996 году был выпущен первый процессор на базе StrongARM - SA-110. Он работал на тактовых частотах 100 МГц, 160 МГц или 200 МГц.

Также на рынок вышли модели SA-1100, SA-1110 и SA-1500.

Процессор SA-110 в Apple MessagePad 2000

Процессоры POWER, POWER2 и PowerPC

В 1985 году компания IBM начала разработку RISC-архитектуры следующего поколения в рамках проекта America Project. Разработка процессора POWER (Performance Optimization With Enhanced RISC) и набора инструкций для него длилась 5 лет. Он был весьма производительный, но состоял из 11 различных микросхем. И поэтому в 1992 году вышел другой вариант процессора, что умещался в одном чипе.

Чипсет POWER

В 1991 году совместными усилиями альянса компаний IBM, Apple и Motorola была разработана архитектура PowerPC (сокращенно PPC). Она состояла из базового набора функций платформы POWER, а также поддерживала работу в двух режимах и была обратно совместима с 32-битным режимом работы для 64-разрядной версии. Основным назначением являлись персональные компьютеры.

Процессор PowerPC 601 использовался в Macintosh.

Процессор PowerPC

В 1993 году был представлен POWER2 с расширенным набором команд. Тактовая частота процессора варьировалась от 55 МГц до 71.5 МГц, а кэш-память данных и инструкций была 128-256 Кб и 32 Кб. Микросхемы процессора (их было 8) содержали 23 миллиона транзисторов, а изготавливался он по 0.72-микрометровой CMOS-технологии.

В 1998 году IBM выпустила третью серию процессоров POWER3 на 64 бита, полностью совместимых со стандартом PowerPC.

В период с 2001 по 2010 вышли модели POWER4 (до восьми параллельно выполняющихся команд), двухядерные POWER5 и POWER6, четырех-восьми ядерный POWER7.

Процессоры Alpha 21064A

В 1992 году компания Digital Equipment Corporation (DEC) выпустила процессор Alpha 21064 (EV4). Это был 64-разрядный суперскалярный кристалл с конвейерной архитектурой и тактовой частотой 100 МГц - 200 МГц. Изготовлен по 0,75-мкм техпроцессу, со внешней 128-разрядной шиной процессора. Присутствовало 16 Кб кэш-памяти (8 Кб данных и 8 Кб инструкций).

Следующей моделью в серии стал процессор 21164 (EV5), который вышел в 1995 году. Он обладал двумя целочисленными блоками и насчитывал уже три уровня кэш-памяти (два в процессоре, третий - внешний). Кэш-память первого уровня разделялась на кэш данных и кэш инструкций объемом по 8 Кб каждый. Объем кэш-памяти второго уровня составлял 96 Кб. Тактовая частота процессора варьировалась от 266 МГц до 500 МГц.

DEC Alpha AXP 21064

В 1996 году вышли процессоры Alpha 21264 (EV6) с 15,2 миллионами транзисторов, изготовленные по 15,2-мкм техпроцессу. Их тактовая частота составляла от 450 МГц до 600 МГц. Целочисленные блоки и блоки загрузки/сохранения были объединены в единый модуль Ebox, а блоки вычислений с плавающей запятой - в модуль Fbox. Кэш первого уровня сохранил разделение на память для инструкций и для данных. Объем каждой части составлял 64 Кб. Объем кэш-памяти второго уровня был от 2 Мб до 8 Мб.

В 1999 году DEC купила компания Compaq. В результате чего большая часть производства продукции, использовавшей Alpha, была передана компании API NetWorks, Inc.

Процессоры Intel P5 и P54C

По макету Винода Дхама был разработан процессор пятого поколения под кодовым названием P5. В 1993 году CPU вышли в производство под названием Pentium.

Процессоры на ядре P5 производились с использованием 800-нанометрового техпроцесса по биполярной BiCMOS-технологии. Они содержали 3,1 миллиона транзисторов. У Pentium была 64-битная шина данных, суперскалярная архитектура. Имелось раздельное кэширование программного кода и данных. Использовалась кэш-память первого уровня объемом 16 Кб, разделенная на 2 сегмента (8 Кб для данных и 8 Кб для инструкций). Первые модели были с частотами 60 МГц - 66 МГц.

Процессор Intel Pentium

В том же году Intel запустила в продажу процессоры P54C. Производство новых процессоров было переведено на 0,6-мкм техпроцесс. Скорость работы процессоров составляла 75 МГц, а с 1994 года - 90 МГц и 100 МГц. Через год архитектура P54C (P54CS) была переведена на 350-нм техпроцесс и тактовая частота увеличилась до 200 МГц.

В 1997 году P5 получила последнее обновление - P55C (Pentium MMX). Появилась поддержка набора команд MMX (MultiMedia eXtension). Процессор состоял из 4,5 миллиона транзисторов и производится по усовершенствованной 280-нанометровой CMOS-технологии. Объем кэш-памяти первого уровня увеличился до 32 Кб (16 Кб для данных и 16 Кб для инструкций). Частота процессора достигла 233 МГц.

Процессоры AMD K5 и K6

В 1995 году компания AMD выпустила процессор K5. Архитектура представляла собой RISC-ядро, но работала со сложными CISC-инструкциями. Процессоры изготавливались с использованием 350- или 500-нанометрового техпроцесса, с 4,3 миллионами транзисторов. Все K5 имели пять целочисленных блоков и один блок вычислений с плавающей запятой. Объем кэш-памяти инструкций составлял 16 Кб, а данных - 8 Кб. Тактовая частота процессоров варьировалась от 75 МГц до 133 МГц.

Процессор AMD K5

Под маркой K5 выпускалось два варианта процессоров SSA/5 и 5k86. Первый работал на частотах от 75 МГц до 100 МГц. Процессор 5k86 работал на частотах от 90 МГц до 133 МГц.

В 1997 году компания представила процессор K6, архитектура которого существенно отличалась от K5. Процессоры изготавливались по 350-нанометровому техпроцессу, включали в себя 8,8 миллионов транзисторов, поддерживали изменение порядка выполнения инструкций, набор команд MMX и блок вычислений с плавающей запятой. Площадь кристалла составляла 162 мм². Объем кэш-памяти первого уровня насчитывал 64 Кб (32 Кб данные и 32 Кб инструкции). Работал процессор на частоте 166 МГц, 200 МГц и 233 МГц. Частота системной шины была 66 МГц.

В 1998 году AMD выпустила чипы с улучшенной архитектурой K6-2, с 9,3 миллионами транзисторов изготавливаемого по 250-нанометровому техпроцессу. Максимальная частота чипа составляла 550 МГц.

Процессор AMD K6

В 1999 году вышла третья генерация - архитектура K6-III. Кристалл сохранил все особенности K6-2, но при этом появилась встроенная кэш-память второго уровня объемом 256 Кб. Объем кэша первого уровня составлял 64 Кб.

Процессоры AMD K7

В том же 1999 году на смену К6 пришли процессоры К7. Они выпускались по 250-нм технологии с 22 миллионами транзисторов. У CPU присутствовал новый блок целочисленных вычислений (ALU). Системная шина EV6 обеспечивала передачу данных по обоим фронтам тактового сигнала, что давало возможность при физической частоте 100 МГц получить эффективную частоту 200 МГц. Объем кэш-памяти первого уровня составлял 128 Кб (64 Кб инструкций и 64 Кб данных). Кэш второго уровня достигал 512 Кб.

Процессор AMD K7

Несколько позже появились кристаллы, базировавшиеся на ядре Orion. Они производилось по 180-нм техпроцессу.

Выход ядра Thunderbird внес необычные изменения в процессоры. Кэш-память 2-го уровня была перенесена непосредственно в процессорное ядро и работала на одинаковой с ним частоте. Кэш был с эффективным объемом 384 Кб (128 Кб кэша первого уровня и 256 Кб кэша второго уровня). Увеличилась тактовая частота системной шины - теперь она функционировала с частотой 133 МГц.

Процессоры Intel P6

Архитектура P6 пришла на смену P5 в 1995 году. Процессор являлся суперскалярным и поддерживал изменения порядка выполнения операций. Процессоры использовали двойную независимую шину, которая значительно увеличила пропускную способность памяти.

В том же 1995 году были представлены процессоры следующего поколения Pentium Pro. Кристаллы работали на частоте 150 МГц - 200 МГц, имели 16 Кб кэш-памяти первого уровня и до 1 Мб кэша второго уровня.

Процессор Intel Pentium Pro

В 1999 году были представлены первые процессоры Pentium III. Они базировались на новой генерации ядра P6 под названием Katmai, которые являлись модифицированными версиями Deschutes. В ядро была добавлена поддержка инструкций SSE, а также улучшился механизм работы с памятью. Тактовая частота процессоров Katmai достигала 600 МГц.

В 2000 году вышли первые процессоры Pentium 4 с ядром Willamette. Эффективная частота системной шины составляла 400 МГц (физическая частота - 100 МГц). Кэш-данных первого уровня достигал объема 8 Кб, а кэш-память второго уровня - 256 Кб.

Следующим ядром линейки стало Northwood (2002 год). Процессоры содержали 55 миллионов транзисторов и производились по новой 130-нм КМОП-технологии с медными соединениями. Частота системной шины составляла 400 МГц, 533 МГц или 800 МГц.

Intel Pentium 4

В 2004 году производство процессоров вновь перевели на более тонкие технологические нормы - 90 нм. Вышли Pentium 4 на ядре Prescott. Кэш данных первого уровня увеличился до 16 Кб, а кэш второго уровня достиг 1 Мб. Тактовая частота составляла 2,4 ГГц - 3,8 ГГц, частота системной шины - 533 МГц или 800 МГц.

Последним ядром, которое использовалось в процессорах Pentium 4 стало одноядерное Cedar Mill. Выпускалось по новому техпроцессу - 65 нм. Существовало четыре модели: 631 (3 ГГц), 641 (3,2 ГГц), 651 (3,4 ГГц), 661 (3,6 ГГц).

Процессоры Athlon 64 и Athlon 64 X2

В конце 2003 года AMD выпустила новую 64-битную архитектуру K8, построенную по 130-нанометровому техпроцессу. В процессоре был встроенный контроллер памяти и шина HyperTransport. Она работала на частоте 200 МГц. Новые продукты AMD получили название Athlon 64. Процессоры поддерживали множество наборов команд, таких как MMX, 3DNow!, SSE, SSE2 и SSE3.

Процессор Athlon 64

В 2005 году на рынок вышли процессоры компании AMD под названием Athlon 64 X2. Это были первые двухъядерные процессоры для настольных компьютеров. В основе модели лежали два ядра, выполненных на одном кристалле. Они имели общий контроллер памяти, шину HyperTransport и очередь команд.

Процессор Athlon 64 X2

В течение 2005 и 2006 годов AMD выпустила четыре поколения двухъядерных чипов: три 90-нм ядра Manchester, Toledo и Windsor, а также 65-нм ядро Brisbane. Процессоры отличались объемом кэш-памяти второго уровня и энергопотреблением.

Процессоры Intel Core

Процессоры Pentium M обеспечивали большую производительность, чем настольные процессоры на базе микроархитектуры NetBurst. И поэтому их архитектурные решения стали основой для микроархитектуры Core, которая вышла в 2006 году. Первым настольным четырехядерным процессором стал Intel Core 2 Extreme QX6700 с тактовой частотой 2.67 ГГц и 8 Мб кэш-памяти второго уровня.

Кодовое имя первого поколения мобильных процессоров компании Intel было Yonah. Они производились с использованием техпроцесса 65 нм, основанного на архитектуре Banias/Dothan Pentium M, с добавленной технологией защиты LaGrande. Процессор мог обрабатывать до четырех инструкций за такт. В Core был переработан алгоритм обработки 128-битных инструкций SSE, SSE2 и SSE3. Если раньше каждая команда обрабатывалась за два такта, то теперь для операции требовался лишь один такт.

Intel Core 2 Extreme QX6700

В 2007 году вышла 45-нм микроархитектура Penryn с использованием металлических затворов Hi-k без содержания свинца. Технология использовалась в семействе процессоров Intel Core 2 Duo. В архитектуру добавилась поддержка инструкций SSE4, а максимальный объем кэш-памяти 2-го уровня у двухъядерных процессоров увеличился с 4 Мб до 6 Мб.

Процессор AMD Phenom II X6

В 2008 году вышла архитектура следующего поколения - Nehalem. Процессоры обзавелись встроенным контроллером памяти, поддерживающим 2 или 3 канала DDR3 SDRAM или 4 канала FB-DIMM. На смену шине FSB, пришла новая шина QPI. Объем кэш-памяти 2-го уровня уменьшился до 256 Кб на каждое ядро.

Intel Core i7

Вскоре Intel перевела архитектуру Nehalem на новый 32-нм техпроцесс. Эта линейка процессоров получила название Westmere.
Первой моделью новой микроархитектуры стал Clarkdale, обладающий двумя ядрами и интегрированным графическим ядром, производимым по 45-нм техпроцессу.

Процессоры AMD K10

Компания AMD старалась не отставать от Intel. В 2007 году она выпустила поколение архитектуры микропроцессоров x86 - K10. Четыре ядра процессора были объединены на одном кристалле. В дополнение к кэшу 1-го и 2-го уровней модели K10 наконец получили L3 объемом 2 Мб. Объем кэша данных и инструкций 1-го уровня составлял 64 Кб каждый, а кэш-памяти 2-го уровня - 512 Кб. Также появилась перспективная поддержка контроллером памяти DDR3. В K10 использовалось два 64-битных контроллера. Каждое процессорное ядро имело 128-битный модуль вычислений с плавающей запятой. Вдобавок ко всему, новые процессоры работали через интерфейс HyperTransport 3.0.

В 2007 году с архитектурой K10 вышли многоядерные центральные процессоры Phenom фирмы AMD, предназначенные для использования в стационарных персональных компьютерах. Решения на базе K10 производились по 65- и 45-нм техпроцессу. В новой версии архитектуры (К10,5) контроллер памяти работал с памятью DDR2 и DDR3.

Процессор AMD Phenom

В 2011 году вышла новая архитектура Bulldozer. Каждый модуль содержал два ядра со своим блоком целочисленных вычислений и кэш-памятью 1-го уровня. Поддерживалась кэш-память 3-го уровня объемом 8 Мб, шины HyperTransport 3.1, технологии увеличения частоты ядер Turbo Core второго поколения и наборов инструкций AVX, SSE 4.1, SSE 4.2, AES. Также процессоры Bulldozer были наделены двухканальным контроллером памяти DDR3 с эффективной частотой 1866 МГц.

Процессор AMD Bulldozer

В 2013 году компания представила следующее поколение процессоров - Piledriver. Данная модель являлась улучшенной архитектурой Bulldozer. Были доработаны блоки предсказания ветвлений, возросла производительность модуля операций с плавающей запятой и целочисленных вычислений, а также тактовая частота.

Просматривая историю, можно проследить этапы развития процессоров, изменения в их архитектуре, усовершенствования технологий разработки и многое другое. Современные CPU отличаются от тех, которые выходили раньше, но при этом имеют и общие черты.

Процессор - это основной компонент компьютера, без него ничего работать не будет. С момента выпуска первого процессора эта технология развивается семимильными темпами. Менялись архитектуры и поколения процессоров AMD и Intel.

В одной из предыдущих статей мы рассматривали , в это статье мы рассмотрим поколения процессоров AMD, рассмотрим из чего все начиналось, и как совершенствовалось пока процессоры не стали такими, как они есть сейчас. Иногда очень интересно понять как развивалась технология.

Как вы уже знаете, изначально, компанией, которая выпускала процессоры для компьютера была Intel. Но правительству США не нравилось, что такая важная для оборонной промышленности и экономики страны деталь выпускается только одной компанией. С другой стороны, были и другие желающие выпускать процессоры.

Была основана компания AMD, Intel поделилась с ними всеми своими наработками и разрешила AMD использовать свою архитектуру для выпуска процессоров. Но продлилось это недолго, спустя несколько лет Intel перестала делиться новыми наработками и AMD пришлось улучшать свои процессоры самим. Под понятием архитектура мы будем подразумевать микроархитектуру, расположение транзисторов на печатной плате.

Первые архитектуры процессоров

Сначала кратко рассмотрим первые процессоры, выпускаемые компанией. Самым первым был AM980, он был полным восьмиразрядного процессора Intel 8080.

Следующим процессором был AMD 8086, клон Intel 8086, который выпускался по контракту с IBM, из-за которого Intel была вынуждена лицензировать эту архитектуру конкуренту. Процессор был 16-ти разрядным, имел частоту 10 МГц, а для его изготовления использовался техпроцесс 3000 нм.

Следующим процессором был клон Intel 80286- AMD AM286, по сравнению с устройством от Intel, он имел большую тактовую частоту, до 20 МГц. Техпроцесс уменьшился до 1500 нм.

Дальше был процессор AMD 80386, клон Intel 80386, Intel была против выпуска этой модели, но компании удалось выиграть иск в суде. Здесь тоже была поднята частота до 40 МГц, тогда как у Intel она была только 32 МГц. Техпроцесс - 1000 нм.

AM486 - последний процессор, выпущенный на основе наработок Intel. Частота процессора была поднята до 120 МГц. Дальше, из-за судебных разбирательств AMD больше не смогла использовать технологии Intel и им пришлось разрабатывать свои процессоры.

Пятое поколение - K5

AMD выпустила свой первый процессор в 1995 году. Он имел новую архитектуру, которая основывалась на ранее разработанной архитектуре RISC. Обычные инструкции перекодировались в микроинструкции, что помогло очень сильно поднять производительность. Но тут AMD не смогла обойти Intel. Процессор имел тактовую частоту 100 МГц, тогда как Intel Pentium уже работал на частоте 133 МГц. Для изготовления процессора использовался техпроцесс 350 нм.

Шестое поколение - K6

AMD не стала разрабатывать новую архитектуру, а решила приобрести компанию NextGen и использовать ее наработки Nx686. Хотя эта архитектура очень отличалась, здесь тоже использовалось преобразование инструкций в RISC, и она тоже не обошла Pentium II. Частота процессора была 350 МГц, потребляемая мощность - 28 Ватт, а техпроцесс 250 нм.

Архитектура K6 имела несколько улучшений в будущем, в K6 II было добавлено несколько наборов дополнительных инструкций, улучшивших производительность, а в K6 III добавлен кєш L2.

Седьмое поколение - K7

В 1999 году появилась новая микроархитектура процессоров AMD Athlon. Здесь была значительно увеличена тактовая частота, до 1 ГГц. Кэш второго уровня был вынесен на отдельный чип и имел размер 512 кб, кэш первого уровня - 64 Кб. Для изготовления использовался техпроцесс 250 нм.

Было выпущено еще несколько процессоров на архитектуре Athlon, в Thunderbird кэш второго уровня вернулся на основную интегральную схему, что позволило увеличить производительность, а техпроцесс был уменьшен до 150 нм.

В 2001 году были выпущены процессоры на основе архитектуры процессоров AMD Athlon Palomino c тактовой частотой 1733 МГц, кэшем L2 256 Мб и техпроцессом 180 нм. Потребляемая мощность достигала 72 Ватт.

Улучшение архитектуры продолжалось и в 2002 году компания выпустила на рынок процессоры Athlon Thoroughbred, которые использовали техпроцесс 130 нм и работали на тактовой частоте 2 ГГц. В следующем улучшении Barton была увеличена тактовая частота до 2,33 ГГц и увеличен в два раза размер кэша L2.

В 2003 году AMD выпустила архитектуру K7 Sempron, которая имела тактовую частоту 2 ГГц тоже с техпроцессом 130 нм, но уже дешевле.

Восьмое поколение - K8

Все предыдущие поколения процессоров были 32 битной разрядности и только архитектура K8 начала поддерживать технологию 64 бит. Архитектура притерпела много изменений, теперь процессоры теоретически могли работать с 1 Тб оперативной памяти, контроллер памяти переместили в процессор, что улучшило производительность по сравнению с K7. Также здесь была добавлена новая технология обмена данными HyperTransport.

Первые процессоры на архитектуре K8 были Sledgehammer и Clawhammer, они имели частоту 2,4-2,6 ГГц и тот же техпроцесс 130 нм. Потребляемая мощность - 89 Вт. Дальше, как и с архитектурой K7 компания выполняла медленное улучшение. В 2006 году были выпущены процессоры Winchester, Venice, San Diego, которые имели тактовую частоту до 2,6 ГГц и техпроцесс 90 нм.

В 2006 году вышли процессоры Orleans и Lima, которые имели тактовую частоту 2,8 ГГц, Последний уже имел два ядра и поддерживал память DDR2.

Наряду с линейкой Athlon, AMD выпустила линейку Semron в 2004 году. Эти процессоры имели меньшую частоту и размер кэша, но были дешевле. Поддерживалась частота до 2,3 ГГц и кэш второго уровня до 512 Кб.

В 2006 году продолжилось развитие линейки Athlon. Были выпущены первые двухъядерные процессоры Athlon X2: Manchester и Brisbane. Они имели тактовую частоту до 3,2 ГГц, техпроцесс 65 нм и потребляемую мощность 125 Вт. В том же году была представлена бюджетная линейка Turion, с тактовой частотой 2,4 ГГц.

Десятое поколение - K10

Следующей архитектурой от AMD была K10, она похожа на K8, но получила много усовершенствований, среди которых увеличение кэша, улучшение контроллера памяти, механизма IPC, а самое главное - это четырехъядерная архитектура.

Первой была линейка Phenom, эти процессоры использовались в качестве серверных, но они имели серьезную проблему, которая приводила к зависанию процессора. Позже AMD исправили ее программно, но это снизило производительность. Также были выпущены процессоры в линейках Athlon и Operon. Процессоры работали на частоте 2,6 ГГц, имели 512 кб кэша второго уровня, 2 Мб кэша третьего уровня и были изготовлены по техпроцессу 65 нм.

Следующим улучшением архитектуры была линейка Phenom II, в которой AMD выполнила переход техпроцесс на 45 нм, чем значительно снизила потребляемую мощность и расход тепла. Четырехъядерные процессоры Phenom II имели частоту до 3,7 ГГц, кэш третьего уровня до 6 Мб. Процессор Deneb уже поддерживал память DDR3. Затем были выпущены двухъядерные и трех ядерные процессоры Phenom II X2 и X3, которые не набрали большой популярности и работали на более низких частотах.

В 2009 году были выпущены бюджетные процессоры AMD Athlon II. Они имели тактовую частоту до 3.0 ГГц, но для уменьшения цены был вырезан кэш третьего уровня. В линейке был четырехъядерный процессор Propus и двухъядерный Regor. В том же году была обновлена линейка продуктов Semton. Они тоже не имели кэша L3 и работали на тактовой частоте 2,9 ГГц.

В 2010 были выпущены шести ядерный Thuban и четырехъядерный Zosma, которые могли работать с тактовой частотой 3,7 ГГц. Частота процессора могла меняться в зависимости от нагрузки.

Пятнадцатое поколение - AMD Bulldozer

В октябре 2011 года на замену K10 пришла новая архитектура - Bulldozer. Здесь компания пыталась использовать большое количество ядер и высокую тактовую частоту чтобы опередить Sandy Bridge от Intel. Первый чип Zambezi не смог даже превзойти Phenom II, уже не говоря про Intel.

Через год после выпуска Bulldozer, AMD выпустила улучшенную архитектуру, под кодовым именем Piledriver. Здесь была увеличена тактовая частота и производительность примерно на 15% без увеличения потребляемой мощности. Процессоры имели тактовую частоту до 4,1 ГГц, потребляли до 100 Вт и для их изготовления использовался техпроцесс 32 нм.

Затем была выпущена линейка процессоров FX на этой же архитектуре. Они имели тактовую частоту до 4,7 ГГц (5 ГГц при разгоне), были версии на четыре, шесть и восемь ядер, и потребляли до 125 Вт.

Следующее улучшение Bulldozer - Excavator, вышло в 2015 году. Здесь техпроцесс был уменьшен до 28 нм. Тактовая частота процессора составляет 3,5 ГГц, количество ядер - 4, а потребление энергии - 65 Вт.

Шестнадцатое поколение - Zen

Это новое поколение процессоров AMD. Архитектура Zen была разработана компанией с нуля. Процессоры выйдут в этом году, ожидается что весной. Для их изготовления будет использоваться техпроцесс 14 нм.

Процессоры будут поддерживать память DDR4 и выделять тепла 95 Ватт энергии. Процессоры будут иметь до 8 ядер, 16 потоков, работать с тактовой частотой 3,4 ГГц. Также была улучшена эффективность потребления энергии и была заявлена возможность автоматического разгона, когда процессор подстраивается в под возможности вашего охлаждения.

Выводы

В этой статье мы рассмотрели архитектуры процессоров AMD. Теперь вы знаете как они развивались процессоры от AMD и как обстоят дела на данный момент сейчас. Вы можете видеть что, некоторые поколения процессоров AMD пропущены, это мобильные процессоры, и мы их намерено исключили. Надеюсь, эта информация была полезной для вас.

1982г. AMD Am 286™

Этот процессор выпускался по лицензии Intel и имел несколько интересных особенностей, таких как эмуляцию EMS, а также способность выхода из protected mode, которой не имели 286"е процессоры Intel. Тех. характеристики: тактовая частота: 12-16 МГц.

198?г. AMD Am 386™ DX

Практически полный аналог Intel-овской "тройки". Кодовое имя: P9. Тех. характеристики: 275000 транзисторов; тактовая частота: 16-32 МГц; процессор 32-разрядный; шина данных 32-разрядная (16-32Мгц); адресная шина 32-разрядная; общая разрядность: 32.

19??г. AMD Am 386™ SX

Low-End версия AMD Am 386™ DX. Кодовое имя: P9. Тех. характеристики: 275000 транзисторов; тактовая частота: 16-32 МГц; процессор 32-разрядный; шина данных 16-разрядная (16-32Мгц); адресная шина 24-разрядная; общая разрядность: 16.

19??г. AMD Am 486™ DX

Процессор со встроенными кэшем первого уровня и математическим сопроцессором (FPU). Немного отставал по производительности от аналогичного процессора фирмы Intel. Кодовое имя: P4:) Тех. характеристики: 1,25 млн. транзисторов; тактовая частота: 25-50 МГц; кэш первого уровня: 8 Кб; кэш второго уровня на материнской плате (до 512 Кб); процессор 32-разрядный; шина данных 32-разрядная (20-50Мгц); адресная шина 32-разрядная; общая разрядность: 32.

199?г. AMD Am 486™ DX2

Полностью 32-х разрядный процессор. Кодовое имя: P24. Тех характеристики: 1,25 млн. транзисторов; тактовая частота: 50-66 МГц; кэш первого уровня: 8 Кб; кэш второго уровня на материнской плате (до 512 Кб); процессор 32-разрядный; шина данных 32-разрядная (25-33 МГц); адресная шина 32-разрядная; общая разрядность: 32.

199?г. AMD Am 486™ DX4

Последняя "четвёрка" от AMD с повышенной тактовой частотой. Кодовое имя: P24C. Тех характеристики: 1,25 млн. транзисторов; тактовая частота: 75-120 МГц; кэш первого уровня: 8 Кб; кэш второго уровня на материнской плате (до 512 Кб); процессор 32-разрядный; шина данных 32-разрядная (25-40 МГц); адресная шина 32-разрядная; общая разрядность: 32.

1995г. AMD Am 586™

Процессор пятого поколения с интегрированным power management-ом. Предназначался для установки на старые материнские платы (под "четвёрки). Кодовое имя: X5. Тех характеристики: 1,6 млн. транзисторов; тактовая частота: 133 МГц; кэш первого уровня: 16 Кб; кэш второго уровня на материнской плате (до 512 Кб); процессор 32-разрядный; шина данных 32-разрядная (33 МГц); адресная шина 32-разрядная; общая разрядность: 32.

1996г. AMD K5™ (SSA5)

Эти процессоры построены по архитектуре x86-to-RISC86, принципиально отличной от архитектуры примененной в процессорах Intel Pentium, но они устанавливаются в тот же разъем Socket 7 на материнских платах и полностью совместимы с процессорами Pentium. Первые процессоры на ядре SSA/5 были недоработанными и сослужили плохую службу реальному K5, вышедшему позже. Для маркировки этих процессоров использовался PR-рейтинг, а не реальная частота. Кодовое имя: SSA5. Тех. характеристики: 4,3 млн. транзисторов; технология производства: 0,5 мкм; тактовая частота: 75-100 МГц; кэш первого уровня: 24 Кб (8 Кб на данные и 16 Кб на инструкции); кэш второго уровня на материнской плате (до 1 Мб); процессор 64-разрядный; шина данных 64-разрядная (50-66 МГц); адресная шина 32-разрядная; общая разрядность: 32; разъём Socket 7.

1996г. AMD K5™ (5k86)

Этот процессор показывал отличную производительность в офисных приложениях, но имел слабый FPU, впрочем как и предыдущий. Для маркировки этих процессоров тоже использовался PR-рейтинг. Кодовое имя: 5k86. Тех. характеристики: 4,3 млн. транзисторов; технология производства: 0,35 мкм; тактовая частота: 90-133 МГц; кэш первого уровня: 24 Кб (8 Кб на данные и 16 Кб на инструкции); кэш второго уровня на материнской плате (до 1 Мб); процессор 64-разрядный; шина данных 64-разрядная (60-66 МГц); адресная шина 32-разрядная; общая разрядность: 32; разъём Socket 7.

1997г. AMD K6®

Процессор, построенный по x86-to-RISC86 технологии, может выполнять до 6 инструкций RISC86 одновременно. Он устанавливается в разъем Socket 7 и может быть использован в платах, предназначенных для процессоров Pentium. В отличие от своих собратьев - процессоров Pentium MMX и Cyrix 6x86MX, он программно совместим с процессором Pentium Pro и работает с MMX инструкциями, что делает его сравнимым с процессором Pentium II фирмы Intel. Был создан на базе дизайна процессора 686 от приобретенной AMD компании NexGen. Кодовое имя: K6. Тех. характеристики: 888 млн. транзисторов; технология производства: 0835 мкм; тактовая частота: 166-233 МГц; кэш первого уровня: 64 Кб (32 Кб на данные и 32 Кб на инструкции); кэш второго уровня на материнской плате (до 1 Мб); процессор 64-разрядный; шина данных 64-разрядная (66 МГц); адресная шина 32-разрядная; общая разрядность: 32; разъём Socket 7.

1997г. AMD K6® (Little Foot)

Этот процессор выпускался по 0.25 мкм технологическому процессу и имел более высокую тактовую частоту, чем предшественник. Кодовое имя: Little Foot. Тех. характеристики: 8.8 млн. транзисторов; технология производства: 0,25 мкм; тактовая частота: 233-300 МГц; кэш первого уровня: 64 Кб (32 Кб на данные и 32 Кб на инструкции); кэш второго уровня на материнской плате (до 1 Мб); процессор 64-разрядный; шина данных 64-разрядная (66 МГц); адресная шина 32-разрядная; общая разрядность: 32; разъём Socket 7.

1998г. AMD K6®-2

В этом процессоре основными усовершенствованиями являются поддержка дополнительного набора инструкций 3DNow!, который существенно повышает производительность в оптимизированных программах и играх, а также 100-МГц системная шина. Кодовое имя: Chomper XT. Тех. характеристики: 9.3 млн. транзисторов; технология производства: 0.25 мкм; тактовая частота: 266-550 МГц; кэш первого уровня: 64 Кб (32 Кб на данные и 32 Кб на инструкции); кэш второго уровня на материнской плате (до 1 Мб); процессор 64-разрядный; шина данных 64-разрядная (66-100 МГц); адресная шина 32-разрядная; общая разрядность: 32; разъём Socket 7.

1999г. AMD K6®-III

Первый процессор от AMD, имеющий кэш-память второго уровня, объединенную с ядром. Представляют собой K6-2 с 256 Кбайт кэш-памятью L2 на чипе, работающей на той же частоте, что и ядро процессора. Рекомендуется для установки на материнские платы Super Socket 7, имеющие поддержку AGP. Кодовое имя: Sharptooth. Тех. характеристики: 21.3 млн. транзисторов; технология производства: 0.25 мкм; тактовая частота: 350-500 МГц; кэш первого уровня: 64 Кб (32 Кб на данные и 32 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); кэш третьего уровня на материнской плате (до 3 Мб); процессор 64-разрядный; шина данных 64-разрядная (100 МГц); адресная шина 32-разрядная; общая разрядность: 32; разъём Super Socket 7.

1999г. Mobile AMD K6®-2

Мобильная версия K6®-2 с технологией PowerNow!™, призванной снижать потребляемую процессором мощность. Тех. характеристики: 9.3 млн. транзисторов; технология производства: 0.25 мкм; тактовая частота: 300-500 МГц; кэш первого уровня: 64 Кб (32 Кб на данные и 32 Кб на инструкции); кэш второго уровня на материнской плате (до 2 Мб); процессор 64-разрядный; шина данных 64-разрядная (100 МГц); адресная шина 32-разрядная; общая разрядность: 32; разъём Socket 7.

1999г. AMD Athlon™

Первый процессор, архитектура и интерфейс которого отличаются от Intel. После его выхода позиции Intel несколько пошатнулись, т. к. он демонстрировал большую производительность в большинстве приложений, чем Pentium !!! при равных тактовых частотах. Имеет расширенный набор инструкций Enhanced 3DNow!. Кодовое имя: K7, К75 (алюминиевые соединения), К76 (медные соединения). Тех. характеристики: 22 млн. транзисторов; технология производства: 0.25-0.18 мкм; тактовая частота: 500-1000 МГц; кэш первого уровня: 128 Кб (64 Кб на данные и 64 Кб на инструкции); кэш второго уровня 512 Кб, работающий на 1/2, 2/5 или 1/3 частоты процессора; процессорная шина – Alpha EV-6 200 МГц (DDR 100х2); общая разрядность: 32; разъём Slot A.

2000г. AMD Athlon™ Thunderbird

Этот процессор выпущен по технологии 0,18 мкм с использованием технологии медных соединений. Первоначально выпускался в форм-факторе Slot A, позднее Socket A. На чипе интегрированы 256 Кбайт кэша второго уровня, работающего на частоте процессора. Кодовое имя: Thunderbird. Тех. характеристики: технология производства: 0.18 мкм; тактовая частота: 600-1400 МГц; кэш первого уровня: 128 Кб (64 Кб на данные и 64 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); процессорная шина – Alpha EV-6 200-266МГц (DDR 100х2-133х2); общая разрядность: 32; разъём Slot A, позднее Socket A.

2000г. AMD Duron™ (Spitfire)

Low-End версия Athlon™ Thunderbird с урезанным до 64 Кбайт кэшем второго уровня. Разносит Celeron в "пух и прах", хотя обладает меньшей ценой. Кодовое имя: Spitfire. Тех. характеристики: 25 млн. транзисторов; технология производства: 0.18 мкм; тактовая частота: 600-950 МГц; кэш первого уровня: 128 Кб (64 Кб на данные и 64 Кб на инструкции); кэш второго уровня 64 Кб (полноскоростной); процессорная шина – Alpha EV-6 200МГц (DDR 100х2); общая разрядность: 32; разъём Socket A.

2000г. AMD K6®-2+

Последний процессор из семейства K6® выполнен по 0,18 мкм технологическому процессу, имеет кэш-память второго уровня размером 128 Кбайт и технологию PowerNow!™. Тех. характеристики: технология производства: 0.18 мкм; тактовая частота: 450-550 МГц; кэш первого уровня: 64 Кб (32 Кб на данные и 32 Кб на инструкции); кэш второго уровня на материнской плате (до 3 Мб); процессор 64-разрядный; шина данных 64-разрядная (95-100 МГц); адресная шина 32-разрядная; общая разрядность: 32; разъём Super Socket 7.

2001г. Mobile AMD Duron™

Мобильная версия Duron-а с технологией PowerNow!™. Тех. характеристики: технология производства: 0.18 мкм; тактовая частота: 700-950 МГц; кэш первого уровня: 128 Кб (64 Кб на данные и 64 Кб на инструкции); кэш второго уровня 64 Кб (полноскоростной); процессорная шина – Alpha EV-6 200МГц (DDR 100х2); общая разрядность: 32.

2001г. AMD Athlon™ 4

Мобильный Athlon™ на новом ядре Palomino, в которое добавлена поддержка набора инструкций SSE от Intel. Кодовое имя: Palomino. Тех. характеристики: технология производства: 0.18 мкм; тактовая частота: 950-1400 МГц; кэш первого уровня: 128 Кб (64 Кб на данные и 64 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); процессорная шина – Alpha EV-6 266МГц (DDR 133х2); общая разрядность: 32; разъём Socket A.

2001г. AMD Athlon™ MP

Первый процессор от AMD, рассчитанный на работу в двухпроцессорных системах, выполнен на ядре Palomino. В маркировке первых процессоров указывалась реальная тактовая частота, а в более поздних индекс производительности. Кодовое имя: Palomino. Тех. характеристики: технология производства: 0.18 мкм; тактовая частота: 1000-1667 МГц; кэш первого уровня: 128 Кб (64 Кб на данные и 64 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); процессорная шина – Alpha EV-6 266МГц (DDR 133х2); общая разрядность: 32; разъём Socket A.

2001г. AMD Duron™ (Morgan)

Этот Duron выполнен на ядре Morgan - урезанном варианте Palomino (кэш L2 не 256, а 64 Кбайта). Кодовое имя: Morgan. Тех. характеристики: 25.18 млн. транзисторов; технология производства: 0.18 мкм; тактовая частота: 1000-1300 МГц; кэш первого уровня: 128 Кб (64 Кб на данные и 64 Кб на инструкции); кэш второго уровня 64 Кб (полноскоростной); процессорная шина – Alpha EV-6 200МГц (DDR 100х2); общая разрядность: 32; разъём Socket A.

2001г. AMD Athlon™ XP

Версия процессора на ядре Palomino для настольных компьютеров. При маркировке этих процессоров используется не реальная тактовая частота, а индекс производительности, т. е. показывается какому Pentium 4 соответствует данный процессор. Например Athlon XP 2000+ работает на частоте 1667 МГц. В отличии от AMD K5, это реальный показатель и Athlon XP 1900+ действительно не уступает Р4 1900 МГц, а в некоторых приложениях даже превосходит его. Тех. характеристики: технология производства: 0.18 мкм; тактовая частота: 1333-1800МГц; кэш первого уровня: 128 Кб (64 Кб на данные и 64 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); процессорная шина – Alpha EV-6 266МГц (DDR 133х2); общая разрядность: 32; разъём Socket A.

2002г. AMD Athlon™ XP (Thoroughbred)

Продолжение развития процессра Athlon XP. В отличии от предыдущего выполнен по 0,13 мкм тех. процессу и маркировка нанесена не на кристалл, а на специальную пластину. Ядро процессра стало несколько прочнее. При маркировке этих процессоров также используется не реальная тактовая частота, а индекс производительности. Кодовое имя: Thoroughbred. Тех. характеристики: технология производства: 0.13 мкм; тактовая частота: 1466-2250МГц; кэш первого уровня: 128 Кб (64 Кб на данные и 64 Кб на инструкции); кэш второго уровня 256 Кб (полноскоростной); процессорная шина – Alpha EV-6 266/333МГц (DDR 133х2/166x2); общая разрядность: 32; разъём Socket A.

2003г. AMD Athlon™ XP (Barton)

Последний процессор из семейства Athlon XP. Выполнен по 0,13 мкм тех. процессу и кэш второго уровня увеличен до 512 Кб. При маркировке этих процессоров также используется не реальная тактовая частота, а индекс производительности. Кодовое имя: Barton. Тех. характеристики: технология производства: 0.13 мкм; тактовая частота: 1833-2166МГц; кэш первого уровня: 128 Кб (64 Кб на данные и 64 Кб на инструкции); кэш второго уровня 512 Кб (полноскоростной); процессорная шина – Alpha EV-6 333МГц (DDR 166x2); общая разрядность: 32; разъём Socket A.