21.07.2023

Конструктор Arduino: новый взгляд сквозь SparkFun Pro Micro. Чиндогу на Arduino Pro Micro или зачем просто когда можно сложно! Защита от КЗ и перегрузки


Arduino Micro не сильно отличается от своих собратьев. На плате расположены 12 аналоговых вводов и 20 цифровых вводов/выводов. 7 из них могут быть использованы как ШИМ выходы. Так же имеется кварцевый генератор с частотой 16 МГц, кнопка перезагрузки и разъем микро-USB. Основное отличие ардуино микро от заключается в самом микроконтроллере. Здесь использован ATmega32u4. Он имеет встроенную поддержку USB соединения. Благодаря этому Arduino Micro может определяться компьютером не только как последовательный COM порт, но и как периферийное устройство. Можно сказать что это уменьшенная копия

Версия Arduino Pro Micro отличается меньшими размерами и имеет 22 пина. Из них 5 могут быть использованы в качестве ШИМ выводов и 4 как аналоговые входы.

Arduino Pro Micro выглядит вот так:

Arduino Pro Micro

Arduino Micro

Так как ардуино микро и про микро практически не отличаются друг от друга, я расскажу подробнее про одну из них.

Характеристики:

  • Микроконтроллер: ATmega32u4
  • Предельное напряжение питания: 5-20 В
  • Рекомендуемое напряжение питания: 7-12 В
  • Цифровых вводов/выводов: 20 (18 в Pro версии)
  • ШИМ: 7 цифровых пинов могут быть использованы как выводы ШИМ (5 в Pro версии)
  • Аналоговые выводы: 12 (4 в Pro версии)
  • Максимальная сила тока: 40 mAh с одного вывода и 500 mAh со всех выводов.
  • Flash память: 32 КБ
  • SRAM: 2,5 КБ
  • EEPROM: 1 КБ
  • Тактовая частота: 16 МГц

Подключение питания к Arduino Micro

Этот микроконтроллер можно питать через порт micro-USB от компьютера, паувербанка или от адаптера, подключенного в розетку.Так же пин +5V является не только выводом, но и вводом. Можно подавать ток на него и все это будет работать только при условии, что напряжение подаваемого тока строго равно пяти вольтам!
Еще можно подавать постоянный ток с напряжением от 6 до 20 вольт на пин VIN. Это предельные значения! При подачи напряжения 20 вольт на плате будет сильно греться стабилизатор напряжения вплоть до выхода из стоя. Если же подавать 5 вольт, то ардуинка может вообще не заработать. Если и заработает то на цифровых пинах напряжение будет ниже 5 вольт. Это связанно с тем, что стабилизатор напряжения имеет не 100% КПД. Рекомендуемое напряжение для питания через пин VIN — от 7 до 12 вольт.


Как уже было написано выше, плата имеет 20 цифровых пинов. Они могут быть как входом так и выходом. Рабочее напряжение этих пинов составляет 5 В. Каждый из них имеет подтягивающий резистор и поданное на один из этих пинов напряжения ниже 5 вольт все равно будет считаться как 5 вольт (логическая единица).

Аналоговые входы: A0 — A5, A6 — A11 (на цифровых выводах 4, 6, 8, 9, 10 и 12). Всего Micro имеет 12 аналоговых входов, причем входы с A0 по A5 маркированы непосредственно на выводах, а другие, к которым также можно получить доступ в программе с использованием констант с A6 до A11, распределены соответственно на цифровых выводах 4, 6, 8, 9, 10 и 12. Все они также могут использоваться в качестве цифровых вход/выходов. Они измеряют поступающее на них напряжение и возвращают значение от 0 до 1024 при использовании функции . Эти пины измеряют напряжение с точностью до 0,005 В.

Широтно-импульсная модуляция (ШИМ) Arduino Micro

У ардуино микро есть 7 выводов ШИМ, это пины 3, 5, 6, 9, 10, 11 и 13. Для использования ШИМ у Arduino есть специальная функция .

Другие пины:

  • Пины 0 (RX) и 1 (TX) используются для передачи данных по последовательному интерфейсу.
  • Выводы для связи по интерфейсу SPI не подключены к цифровым пинам.
  • Так же на выводе D13 имеется встроенный в плату светодиод.
  • Пины 2 (SDA) и 3 (SCL) могут использоваться для связи с другими устройствами по шине I2C. Подробнее про этот интерфейс вы можете почитать на википедии . В среде разработке Arduino IDE есть встроенная библиотека «wire.h» для более легкой работы с I2C.

Физические характеристики

Arduino Micro имеет следующие размеры: длина 48 мм и ширина 18 мм. Однако разъем USB немного выпирает за пределы печатной платы. Arduino Micro весит всего около 12 грамм. Плата имеет 4 отверстия для возможности ее закрепления на поверхности. Расстояние между выводами равняется 2,54 мм.

Принципиальная схема Arduino Micro


Arduino Micro , именно так без приставки Pro , звучит название оригинальной платы, которая была разработана совместно с компанией Adafruit. В китайском варианте плата была модифицирована, это отразилось на размерах и цене.

Оригинальная плата на момент написания этой статьи стоила €18 , в то время как китайский аналог обошёлся мне за $3.63 с доставкой.

Для наглядности оригинальная плата Arduino Micro и китайский аналог. Размер оригинальной платы 48 х 18 мм.

Китайский аналог имеет такие же размеры (33 х 18 мм) как и плата Pro Mini, видимо поэтому в название была добавлена приставка Pro .

Обратная сторона плат.

Плату удалось уменьшить исключив из схемы некоторые узлы и разместив более плотно оставшиеся радиокомпоненты. Были исключены: разъем ICSP (для внутрисхемного программирования), физическая кнопка сброса, светодиод на 13 пине и ряд радиокомпонентов, которые необходимы для реализации соответствующих напряжений на пинах «5V» и «3V3».

В погоне за минимализмом и ценой, китайский аналог Pro Micro лишился следующих пинов, которые присутствуют на оригинальном Arduino Micro:

- цифровые пины 12, 11 и 13, два крайних по совместительству являются ШИМ выводами;
- аналоговые A4, A5 и A11;
- пин RX_LED/SS - данный вывод соединён со светодиодом RX, но так же может использоваться как вывод SS в SPI-интерфейсе;
- пины с напряжениями 5V и 3,3V;
- пин AREF

Несмотря на такой минимализм, в остальном китайский аналог совместим с оригиналом.

Плата построена на микроконтроллере ATmega32u4.

Отличия Ардуиносовместимых плат на ATmega32u4, от плат с другими микроконтроллерами:

1. В ATmega32u4 встроен USB-контроллер, поэтому отпадает необходимость в отдельных USB-UART микросхемах таких как: ATMEGA16U2, CH340G , PL2303 и FT232.

2. Может эмулировать клавиатуру, мышь или игровой манипулятор и определятся в системе как HID-устройство.

3. Устройства построенные на ATmega32u4 имеют виртуальный последовательный порт, что приводит к разрыву USB-соединения с компьютером, при каждом сбросе платы. Эту особенность нужно учитывать при установке драйверов, прошивки и взаимодействии с другими устройствами.

4. При обращении к аппаратному последовательному порту нужно использовать класс Serial1 , вместо Serial , как в других Ардуино-платах.

В семействе платформы Arduino имеется две платы, построенные на ATmega32u4: Arduino Leonardo и Arduino Micro . Основное их отличие - форм-фактор. Плата Leonardo построена в форм-факторе Uno, что бы легко было цеплять различные шилды. Плата Micro построена в компактном корпусе, как Arduino Nano.

Оригинальная плата Arduino Micro бывает только в варианте 5В, с разведёнными на плате пинами 5 и 3,3В. Китайский аналог Pro Micro может быть в 2-х вариантах: 3,3 или 5 вольт питания. Если не знаете на какое напряжение ваша плата, посмотрите на частоту кварца, которая указана на его корпусе. 5-вольтовая плата работает на частоте 16 МГц, а 3,3-вольтовая на 8 МГц.

Ещё можно перевернуть плату, и увидеть отметку на какое напряжение она рассчитана. Поскольку мой экземпляр платы прошит загрузчиком от Leonardo, у меня не может быть никаких отметок, она 5-вольтовая.


Входы и выходы Pro Micro.

18 цифровых вывода могут работать как входами, так и выходами. Напряжение на выводах 5 или 3,3В в зависимости от версии платы, при токе в 40мА на каждом пине;
- последовательный интерфейс с пинами TX и RX;
- I2C интерфейс с пинами SDA и SCL;
- ШИМ выводы: 3, 5, 6, 9, 10;
- SPI интерфейс с пинами MISO, MOSI и SCK;
- Светодиоды сигнализирующие: наличие питания, RX и TX;
- 9 аналоговых входов A0-A3 и A6-A10;
- RESET – вывод для перезагрузки микроконтроллера, аналогичен физической кнопки сброса.


Защита от КЗ и перегрузки.

На плате имеется восстанавливающий предохранитель MF-MSMF050-2, который защитит USB-порты вашего компьютера, если будет короткое замыкание и перегрузка по току. Предохранитель автоматически разорвёт соединение, если к USB компьютера будет подключено более 500 мА. В таком состоянии он будет находится пока не будет устранено короткое замыкание или перегрузка.

Про питание Pro Micro.

Pro Micro может быть запитана от USB порта вашего ПК, для этого используется USB разъём на плате.

Для питания платы от внешнего не стабилизированного источника, питание нужно подавать на вывод RAW . На этот вывод рекомендуется подавать от 7 до 12В. Если питать плату от 6В, плата может работать не стабильно. При напряжении более 12В, встроенный стабилизатор напряжения может сгореть. С этого вывода, напряжение будет преобразовываться внутренним стабилизатором до необходимого и питать микроконтроллер.

VCC – данный пин можно использовать как для подачи напряжения для питания платы, так и для снятия напряжения, для запитки всевозможных датчиков / сенсоров. Для питания платы через этот пин, нужно строго подавать то стабилизированное напряжение, на которое рассчитана плата. С этого пина напряжение не идёт через внутренний стабилизатор, а напрямую подаётся на контроллер, поэтому если оно будет выше необходимого - плата сгорит.
При питании платы через USB разъём или RAW, на данном выводе будет присутствовать напряжение, равное напряжению питания Pro Micro. Этим напряжением можно запитывать различные датчики. Максимальный выходной ток для всей платы не должен превышать 500мА, на отдельный пин не больше 5 - 10мА.

J1 – Если плата прошита загрузчиком Arduino Micro, то эти контакты используются при конфигурировании версии платы. При 5-вольтовой версии контакты запаяны, при 3,3В - разомкнуты. Поскольку у меня плата распознаётся как «Leonardo», эта перемычка не используется и она разомкнута.


Установка драйвера на Pro Micro.

При подключении платы к компьютеру загорится красный светодиод, сигнализирующий о наличии питания на плате.

В диспетчере устройств появится неизвестное устройство "Arduino Leonardo ". Почему так, а не "Pro Min i"? Потому что разработчик прошил микроконтроллер загрузчиком от Leonardo, на работе это никак не скажется.

Для Windows 10 ничего не придётся скачивать, драйвер установится автоматически.

Для остальных систем семейства Windows скачиваем драйвер и устанавливаем его в ручном режиме.

При установки драйвера на Windows 7 у меня появилось сообщение о невозможности проверки издателя драйверов. В таком случае выбираем «Всё равно установить этот драйвер ».

В итоге, в диспетчере устройств появится устройство "Arduino Leonardo ". Рядом будет указан номер виртуального COM-порта, в моём случае это COM14 .

Загрузка скетча в Arduino Leonardo и Pro micro.

Попробуем загрузить в плату скетч Blink и убедится в её работоспособности. Открываем стандартный скетч "Blink". Выбираем в Arduino IDE плату.

Поскольку загрузчик в ней от Leonardo, значит эту плату и выбираем: "Инструменты" - Плата: "Arduino Leonardo".

Если у вас загрузчик будет от Arduino Micro, значит выбираете его. Не забывайте так же выбрать версию платы 5 или 3,3В, как это выбирается с платой Pro mini. Отсюда выплывает объяснение, почему 5-вольтовый китайский аналог Micro, прошит загрузчиком Leonardo. Плата Leonardo присутствует в Arduino IDE, а плату Pro Micro нужно добавлять вручную через менеджер плат. Видимо что бы пользователи не заморачивались в этих настройках, плату прошивают как Leonardo. Подобные доводы имеют место быть, если мы говорим про версию платы 5В. Если нужна плата на ATmega32u4 с логическими уровнями 3,3В, без ручного добавления платы в Arduino IDE не обойтись.

Выбираем номер виртуального COM-порта, который прописан в Диспетчере устройств, в моём случае это COM14 .

Нажимаем кнопку "Вгрузить" (Upload) и ждём загрузку скетча.

В процессе загрузки в колонках услышите звук извлечения / подключения USB устройства. Это происходит потому что последовательный порт с которым взаимодействует устройство, на платах Leonardo и Micro является виртуальным. При каждом автоматическом сбросе платы, виртуальный порт исчезает, затем вновь появляется, чем объясняется характерный звук в колонках.
Обычно скетч загружается в плату без нажатия кнопки reset, видимо поэтому на китайском аналоге решили избавится от этой кнопки. В редких случаях, когда автоматический сброс не сработает, нужно использовать физическую кнопку сброса или пин reset.

Загрузив в плату скетч "Blink" мы не сможем наблюдать мигание светодиода. Дело в том, что на плате Pro Micro нет светодиода подключенного к 13 пину. Придётся его отдельно подключать к ножкам через резистор . Можно поступить по другому, на плате имеются светодиоды RX и TX, можно ими помигать.

Загружаем следующий скетч:

int LED_RX = 17;
void setup() {
Serial.begin(9600);
pinMode(LED_RX, OUTPUT);
} void loop() {
Serial.println ("Hello World!");
digitalWrite(LED_RX, LOW);
delay(1000);
digitalWrite(LED_RX, HIGH);
delay(1000);
}

Увидим как мигает RX светодиод.

Если открыть монитор последовательного порта, увидим надпись Hello World! и теперь светодиоды RX и TX будут перемигиваться.

Arduino Micro не сильно отличается от своих собратьев. На плате расположены 12 аналоговых вводов и 20 цифровых вводов/выводов. 7 из них могут быть использованы как ШИМ выходы. Так же имеется кварцевый генератор с частотой 16 МГц, кнопка перезагрузки и разъем микро-USB. Основное отличие ардуино микро от заключается в самом микроконтроллере. Здесь использован ATmega32u4. Он имеет встроенную поддержку USB соединения. Благодаря этому Arduino Micro может определяться компьютером не только как последовательный COM порт, но и как периферийное устройство. Можно сказать что это уменьшенная копия

Версия Arduino Pro Micro отличается меньшими размерами и имеет 22 пина. Из них 5 могут быть использованы в качестве ШИМ выводов и 4 как аналоговые входы.

Arduino Pro Micro выглядит вот так:

Arduino Pro Micro

Arduino Micro

Так как ардуино микро и про микро практически не отличаются друг от друга, я расскажу подробнее про одну из них.

Характеристики:

  • Микроконтроллер: ATmega32u4
  • Предельное напряжение питания: 5-20 В
  • Рекомендуемое напряжение питания: 7-12 В
  • Цифровых вводов/выводов: 20 (18 в Pro версии)
  • ШИМ: 7 цифровых пинов могут быть использованы как выводы ШИМ (5 в Pro версии)
  • Аналоговые выводы: 12 (4 в Pro версии)
  • Максимальная сила тока: 40 mAh с одного вывода и 500 mAh со всех выводов.
  • Flash память: 32 КБ
  • SRAM: 2,5 КБ
  • EEPROM: 1 КБ
  • Тактовая частота: 16 МГц

Подключение питания к Arduino Micro

Этот микроконтроллер можно питать через порт micro-USB от компьютера, паувербанка или от адаптера, подключенного в розетку.Так же пин +5V является не только выводом, но и вводом. Можно подавать ток на него и все это будет работать только при условии, что напряжение подаваемого тока строго равно пяти вольтам!
Еще можно подавать постоянный ток с напряжением от 6 до 20 вольт на пин VIN. Это предельные значения! При подачи напряжения 20 вольт на плате будет сильно греться стабилизатор напряжения вплоть до выхода из стоя. Если же подавать 5 вольт, то ардуинка может вообще не заработать. Если и заработает то на цифровых пинах напряжение будет ниже 5 вольт. Это связанно с тем, что стабилизатор напряжения имеет не 100% КПД. Рекомендуемое напряжение для питания через пин VIN — от 7 до 12 вольт.


Как уже было написано выше, плата имеет 20 цифровых пинов. Они могут быть как входом так и выходом. Рабочее напряжение этих пинов составляет 5 В. Каждый из них имеет подтягивающий резистор и поданное на один из этих пинов напряжения ниже 5 вольт все равно будет считаться как 5 вольт (логическая единица).

Аналоговые входы: A0 — A5, A6 — A11 (на цифровых выводах 4, 6, 8, 9, 10 и 12). Всего Micro имеет 12 аналоговых входов, причем входы с A0 по A5 маркированы непосредственно на выводах, а другие, к которым также можно получить доступ в программе с использованием констант с A6 до A11, распределены соответственно на цифровых выводах 4, 6, 8, 9, 10 и 12. Все они также могут использоваться в качестве цифровых вход/выходов. Они измеряют поступающее на них напряжение и возвращают значение от 0 до 1024 при использовании функции . Эти пины измеряют напряжение с точностью до 0,005 В.

Широтно-импульсная модуляция (ШИМ) Arduino Micro

У ардуино микро есть 7 выводов ШИМ, это пины 3, 5, 6, 9, 10, 11 и 13. Для использования ШИМ у Arduino есть специальная функция .

Другие пины:

  • Пины 0 (RX) и 1 (TX) используются для передачи данных по последовательному интерфейсу.
  • Выводы для связи по интерфейсу SPI не подключены к цифровым пинам.
  • Так же на выводе D13 имеется встроенный в плату светодиод.
  • Пины 2 (SDA) и 3 (SCL) могут использоваться для связи с другими устройствами по шине I2C. Подробнее про этот интерфейс вы можете почитать на википедии . В среде разработке Arduino IDE есть встроенная библиотека «wire.h» для более легкой работы с I2C.

Физические характеристики

Arduino Micro имеет следующие размеры: длина 48 мм и ширина 18 мм. Однако разъем USB немного выпирает за пределы печатной платы. Arduino Micro весит всего около 12 грамм. Плата имеет 4 отверстия для возможности ее закрепления на поверхности. Расстояние между выводами равняется 2,54 мм.

Принципиальная схема Arduino Micro


Для облегчения работы над своими «радиотехническими самоделками» решил я применять в их изготовлении такую модную вещь, как микроконтроллерные платы на чипах компании AtMega известной серии Arduino. Работать с этими платами просто удовольствие. В результате получается вполне самодостаточное устройство, которое можно не просто спаять, а еще запрограммировать и при помощи собственной прошивки «довести до ума».

Одно плохо — оригинальные итальянские платы Arduino стоят довольно дорого для самоделки, и их цена сравнима с покупкой уже готового фабричного устройства, а значит купить это устройство куда проще, чем изготавливать самому.

Выход мной был найден просто: приобретать через eBay дешевые китайские аналоги данных плат.В результате для своих нужд я подобрал вот такую плату:


это Leonardo Pro Micro ATmega32U4. Плата построена на микроконтроллере ATmega32U4 , что позволило, не применяя конвертер USB-UART, подключать плату в USB-порту компьютера. Это исключает необходимость применения программатора для записи скетча в плату. Возможности:

  • частота: 16МГц
  • 4 канала АЦП (10 бит)
  • 10 портов ввода-вывода общего назначения (из них 5 с ШИМ)
  • выводы Rx/Tx
  • светодиоды: питание, Rx, Tx
  • Размеры: 18х33 мм.

Плата имеет регулятор напряжения, что позволяет использовать питание до 12В
(вывод RAW, не VCC!)

  • RAW — внешнее питание для платы. Когда плата запитана от порта USB, на данном выводе будет напряжение около 4,8В (5В на USB минус падение на диоде Шоттки). Внешний источник питания следует подключать через этот вывод, допустимое напряжение — до 12В
  • VCC — напряжение, подаваемое на микроконтроллер (выход после регулятора напряжения на плате). Если плата запитана от внешнего источника, этот вывод можно использовать для питания других устройств стабилизированным напряжением
  • RST — вывод сброса микроконтроллера, подтянут к +5В резистором на 10кОм. Для сброса микроконтроллера его следует соединить с GND
  • GND — общий.

Главное достоинство данной платы, кроме цены (менее 200 рублей) — это наличие встроенного в микроконтроллер USB порта, который может выступать не только как интерфейс связи Ардуино с ПК, но и как обычное USB-устройство ввода (клавиатура, мышь и даже джойстик). При этом данное устройство определяется и устанавливается ОС без дополнительных драйверов. Драйвер необходим только непосредственно для программирования самой платы.

При работе в программе нужно выбирать работа с Arduino Leonardo:

Данное устройство можно купить еще вот .

В своей статье я хотел бы подробно и с иллюстрациями рассказать про схему подключения и распиновку Arduino.

Ниже мы постараемся рассмотреть различные модели микроконтроллеров.

Слово Uno переводится с итальянского языка, как «один». Устройство названо в связи с началом выпуска Arduino 1.0. Другими словами, Uno является эталонной моделью для всей платформы типа Arduino. Это последнее устройство в серии плат USB, доказавшее свою эффективность и проверенное временем.

Arduino Uno создано на микроконтроллере типа ATmega 328 (datasheet).

Его состав следующий:

  • количество цифровых входов и выходов составляет 14 (а шесть из них имеется возможность использовать как выходы ШИМ);
  • число аналоговых входов составляет шесть;
  • 16 МГц – кварцевый резонатор;
  • имеется разъём для питания;
  • есть разъём, предназначенный для ICSP-программирования внутри самой схемы;
  • присутствует кнопка для сброса.

Крайне важно отметить, что отличительной особенностью всех новых плат arduino является использование для интерфейсов USB–UART микроконтроллера типа ATmega 16U2 (или ATmega 8U2 в версиях R1, R2) вместо устаревшей микросхемы типа FTDI.

Плата Uno по версии R2 снабжается дополнительным подтягивающим к земле резистором на линии HWB применяемого микроконтроллера.

Распиновка выглядит следующим образом:

  1. Последовательный интерфейс использует шины №0 (RX – получение данных), №1 (TX – передача данных).
  2. Для внешнего прерывания используются выводы №2, №3.
  3. Для ШИМ используются выводы за номерами 3,5, 6, 9, 10, 11. Функция analog Write обеспечивает разрешение в 8 бит.
  4. Связь посредством SPI: контакты №10 (SS), №11 (MOSI), №12 (MISO), №13 (SCK).
  5. Вывод №13 запитывает светодиод, который загорается при высоком потенциале.
  6. Uno оснащена 6 аналоговыми входами (A0 – A5), которые имеют разрешение в 10 бит.
  7. Для изменения верхнего предела напряжения используется вывод AREF (функция analog Reference).
  8. Связь I2C (TWI, библиотека Wire) осуществляется через выводы №4 (SDA), №5 (SCL).

Устройство построено на микроконтроллере АTmega16U2 и имеет повышенный уровень помехоустойчивости по цепи сброса.

Устройство отличается от предыдущей версии лишь тем, что в этом случае не используется интерфейс USB-UART FTDI при подключении к компьютеру. Эту задачу выполняет выполняет сам микроконтроллер ATmega 16U2.

Изменения распиновки платы выглядят следующим образом:

  1. Возле вывода AREF добавлены два пина: SDA, SCL.
  2. Возле пина RESET также добавлены два вывода: IOREF, позволяющий подключать платы расширения с подстройкой под необходимое напряжение; второй вывод не используется и находится в резерве.

2. Плата Arduino Mini

Является одной из самых простых и удобных устройств Arduino.

Используется микроконтроллер ATmega 168 с рабочим напряжением на 5 вольт с частотой в 16 МГц. Максимальное напряжение питания в моделях составляет 9 вольт. Значение максимального тока на выводах составляет 40 mA.

Плата содержит:

  • 14 цифровых выводов (из них 6 могут быть использованы в качестве ШИМ-выходов), могут применяться в качестве как входа, так и выхода;
  • 8 аналоговых входов (4 из них оснащены выводами);
  • 16 МГц – кварцевый генератор.

Пины устройства Arduino Mini имеют следующее предназначение:

  1. Два вывода, посредством которых осуществляется питание платы «плюс»: RAW, VCC.
  2. Вывод контакта «минус» – пин GND.
  3. Выводы под номерами 3, 5, 6, 9, 10, 11 используются для ШИМ при применении функции analog Write.
  4. К выводам №0, №1 можно подключать другие устройства.
  5. Аналоговые входы №0 – №3 с выводами.
  6. Аналоговые входы №4 – №7 не имеют выводов и требуют пайки при необходимости.
  7. Вывод AREF, который предназначен для изменения верхнего напряжения.

Расположение выводов в различных версиях arduino mini могут различаться.

3. Плата Arduino Mega 2560

Устройство Arduino Mega 2560 собрано на микроконтроллере ATmega 2560 (datasheet), является обновлённой версией Arduino Mega.

Для осуществления преобразования USB–UART-интерфейсов используется новый микроконтроллер ATmega 16U2 (либо ATmega 8U2 для версий плат R1 или R2).

Состав платы следующий:

  • количество цифровых входов/выходов составляет 54 (15 из них можно использовать в роли выходов-ШИМ);
  • число аналоговых входов – 16;
  • реализация последовательных интерфейсов производится посредством 4 аппаратных приёмопередатчиков UART;
  • 16 МГц – кварцевый резонатор;
  • USB-разъём;
  • питающий разъём;
  • внутрисхемное программирование осуществляется через ICSP-разъём;
  • кнопка для сброса.

В устройстве Mega 2560 R2-версии добавлен специальный резистор, подтягивающий HWB-линию 8U2 к земле, что позволяет значительно упростить переход Arduino в DFU-режим, а также обновление прошивки. Версия R3 незначительно отличается от предыдущих. Изменения в устройстве следующие:

  • добавлены четыре вывода – SCL, SDA, IOREF (для осуществления совместимости по напряжению различных расширительных плат) и ещё один резервный вывод, пока не используемый;
  • повышена помехоустойчивость по цепи сброса;
  • увеличен объём памяти;
  • ATmega8U2 заменён на микроконтроллер ATmega16U2.

Выводы предназначаются для следующего:

  1. Имеющиеся цифровые пины могут служить входом-выходом. Напряжение на них – 5 вольт. Каждый пин обладает подтягивающим резистором.
  2. Аналоговые входы не оснащены подтягивающими резисторами. Работа основана на применении функции analog Read.
  3. Количество выводов ШИМ составляет 15. Это цифровые выводы №2 – №13, №44 – №46. Использование ШИМ производится через функцию analog Write.
  4. Последовательный интерфейс: выводы Serial: №0 (rx), №1 (tx); выводы Serial1: №19 (rx), №18 (tx); выводы Serial2: №17 (rx), №16 (tx); выводы Serial3: №15 (rx), №14 (tx).
  5. Интерфейс SPI оборудован выводами №53 (SS), №51 (MOSI), №50 (MISO), №52 (SCK).
  6. Вывод №13 – встроенный светодиод.
  7. Пины для осуществления связи с подключаемыми устройствами: №20 (SDA), №21 (SCL).
  8. Для внешних прерываний (низкий уровень сигнала, другие изменения сигнала) используются выводы №2 , №3, №18, №19, №20, №21.
  9. Вывод AREF задействуется командой analog Reference и предназначается для регулирования опорного напряжения аналоговых входных пинов.
  10. Вывод Reset. Предназначен для формирования незначительного уровня (LOW), что приводит к перезагрузке устройства (кнопка сброса).

4. Плата Arduino Micro

Arduino Micro представляет собой устройство, основа которого построена на микроконтроллере ATmega 32u4, имеющем встроенный USB-контроллер. Это решение упрощает подключение платы к компьютеру, так как в системе устройство будет определяться как обычная клавиатура, мышь либо COM-порт. Состав устройства следующий:

  • количество входов/выходов – 20 (имеется возможность 7 из них использовать как ШИМ-выходы, а 12 – в роли входов аналогового типа); резонатор кварцевый, настроенный на 16 МГц;
  • micro-USB-разъём;
  • ICSP-разъём, предназначенный для проведения внутреннего программирования;
  • кнопка для сброса.

Все цифровые выводы изделия могут работать в качестве как входов, так и выходов благодаря наличию функций digital Read, pin Mode, digital Write. Напряжение на выводах составляет 5 вольт. Максимальная величина потребляемого или отдаваемого тока с одного вывода составляет 40 мА. Выводы сопрягаются с внутренними резисторами, которые по умолчанию находятся в отключенном состоянии. Они имеют номиналы в 20 кОм – 50 кОм. Отдельные выводы arduino micro, кроме основных, способны выполнять и ряд дополнительных функций:

  1. В последовательном интерфейсе выводы №0 (RX), №1 (TX) применяются для приёма (RX), а также передачи (TX) необходимых данных через встроенный аппаратный приёмопередатчик. Функция актуальна для arduino micro класса Serial. В других случаях связь осуществляется через соединение USB (CDC).
  2. Интерфейс TWI включает выводы микроконтроллера №2 (SDA) и №3 (SCL). Позволяют использовать данные библиотеки Wire.
  3. Выводы под номерами 0, 1, 2, 3 могут быть использованы в роли источников возникающих прерываний. К таковым относятся низкий уровень сигнала; прерывания по фронту, по спаду, при изменении уровня сигнала.
  4. Выводы под номерами 3, 5, 6, 9, 10, 11,13 при использовании функции analog Write способны выводить аналоговый ШИМ-сигнал в 8 бит.
  5. К SPI-интерфейсу относятся выводы на разъёме ICSP. Они не соединяются с цифровыми выводами на плате.
  6. Дополнительный вывод RX LED/SS, который соединён со светодиодом. Последний индицирует процесс по передаче данных с использованием USB. Этот вывод может быть использован при работе с интерфейсом SPI для вывода SS.
  7. Вывод №13 – светодиод, который включается при отправке данных HIGH и выключается при значениях LOW.
  8. Выводы A0 – A5 (отмечены на плате) и A6 – A11 (соответствуют цифровым выводам за номерами 4, 6, 8, 9, 10,12) являются аналоговыми.
  9. Вывод AREF позволяет изменять верхнее значение аналогового напряжения на вышеуказанных выводах. При этом используется функция analog Reference.
  10. С помощью вывода Reset формируется низкий уровень (LOW) и происходит перезагрузка микроконтроллера (кнопка сброса).